SUMMARY OF SAFETY AND EFFECTIVENESS DATA (SSED)

I. GENERAL INFORMATION

Device Generic Name: Intraocular Lens

Device Trade Name: • TECNIS Synergy[™] IOL, Model ZFR00V

• TECNIS Synergy[™] Toric II IOL, Models ZFW150, ZFW225, ZFW300, ZFW375

 TECNIS Synergy[™] IOL with TECNIS Simplicity[™] Delivery System, Model

DFR00V

 TECNIS Synergy[™] Toric II IOL with TECNIS Simplicity[™] Delivery System, Model DFW150, DFW225, DFW300,

DFW375

Device Procode: Multifocal Intraocular (MFK)

Applicant's Name and Address: Johnson & Johnson Surgical Vision, Inc.

1700 East Saint Andrew Place

Santa Ana, CA 92705

Date(s) of Panel Recommendation: None

Premarket Approval Application P980040/S124

(PMA) Number:

Date of FDA Notice of Approval:

The TECNIS SynergyTM multifocal intraocular lens (Daisywheel configuration Model ZFR00V and SimplicityTM preloaded configuration DFW00V) and toric multifocal lenses (Daisywheel configuration ZFW150, ZFW225, ZFW300, and ZFW375; SimplicityTM preloaded configuration DFW150, DFW225, DFW300 and DFW375) are based on the TECNIS multifocal ZM900 and TECNIS Symfony ZXR00 optical parents, the TECNIS Toric 1-Piece ZCT toric parent, and the TECNIS OptiBlue ZV9003 material parent. These were approved under PMAs P080010 (January 9, 2009), P980040/S065 (July 15, 2016), P980040/S039 (April 12, 2013), and P980040/S035 (September 12, 2012), respectively. The optical parents and toric parent devices have the following Indications for Use:

TECNIS multifocal intraocular lens is indicated for primary implantation for the visual correction of aphakia in adult patients with and without presbyopia in whom

a cataractous lens has been removed by phacoemulsification and who desire near, intermediate, and distance vision with increased spectacle independence. The intraocular lenses are intended to be placed in the capsular bag.

The TECNIS Symfony Extended Range of Vision IOL, Model ZXR00, is indicated for primary implantation for the visual correction of aphakia, in adult patients with less than 1 diopter of pre-existing corneal astigmatism, in whom a cataractous lens has been removed. The lens mitigates the effects of presbyopia by providing an extended depth of focus. Compared to an aspheric monofocal IOL, the lens provides improved intermediate and near visual acuity, while maintaining comparable distance visual acuity. The Model ZXR00 IOL is intended for capsular bag placement only.

The TECNIS Toric 1-piece posterior chamber lenses are indicated for the visual correction of aphakia and pre-existing corneal astigmatism of one diopter or greater in adult patients with or without presbyopia in whom a cataractous lens has been removed by phacoemulsification and who desire improved uncorrected distance vision, reduction in residual refractive cylinder and increased spectacle independence for distance vision. The device is intended to be placed in the capsular bag.

The SSEDs to support the indications are available on the CDRH website and are incorporated by reference here:

- https://www.accessdata.fda.gov/cdrh_docs/pdf8/P080010b.pdf
- https://www.accessdata.fda.gov/cdrh_docs/pdf/P980040S065B.pdf
- https://www.accessdata.fda.gov/cdrh_docs/pdf/P980040S039b.pdf

The current supplement was submitted to modify the indications and include the TECNIS Synergy[™] IOL, Model ZFR00V, TECNIS Synergy[™] Toric II IOL, Models ZFW150, ZFW225, ZFW300, ZFW375, the TECNIS Synergy[™] IOL with TECNIS Simplicity[™] Delivery System, Model DFR00V, and the TECNIS Synergy[™] Toric II IOL with TECNIS Simplicity[™] Delivery System, Models DFW150, DFW225, DFW300, DFW375.

II. INDICATIONS FOR USE

TECNIS Synergy™ IOL, Model ZFR00V

The TECNIS Synergy[™] IOL, Model ZFR00V, is indicated for primary implantation for the visual correction of aphakia in adult patients, with less than 1 diopter of pre-existing corneal astigmatism, in whom a cataractous lens has been removed. Compared to an aspheric monofocal lens, the TECNIS Synergy[™] IOL mitigates the effects of presbyopia by providing improved visual acuity at intermediate and near distances to reduce eyeglass

wear, while maintaining comparable distance visual acuity. The lens is intended for capsular bag placement only.

TECNIS Synergy[™] Toric II IOL, Models ZFW150, ZFW225, ZFW300, ZFW375

The TECNIS Synergy[™] Toric II IOL, Models ZFW150, ZFW225, ZFW300, ZFW375, are indicated for primary implantation for the visual correction of aphakia and for the reduction of refractive astigmatism in adult patients with greater than or equal to 1 diopter of preoperative corneal astigmatism, in whom a cataractous lens has been removed. Compared to an aspheric monofocal lens, the TECNIS Synergy[™] Toric II IOLs mitigate the effects of presbyopia by providing improved visual acuity at intermediate and near distances to reduce eyeglass wear while maintaining comparable distance visual acuity. The lens is intended for capsular bag placement only.

TECNIS Synergy TM IOL with TECNIS Simplicity TM Delivery System, Model DFR00V

The TECNIS Simplicity™ Delivery System is used to fold and assist in inserting the TECNIS Synergy™ IOL which is indicated for primary implantation for the visual correction of aphakia in adult patients, with less than 1 diopter of pre-existing corneal astigmatism, in whom a cataractous lens has been removed. Compared to an aspheric monofocal lens, the TECNIS Synergy™ IOL mitigates the effects of presbyopia by providing improved visual acuity at intermediate and near distances to reduce eyeglass wear, while maintaining comparable distance visual acuity. The lens is intended for capsular bag placement only.

TECNIS Synergy[™] Toric II IOL with TECNIS Simplicity[™] Delivery System, Models DFW150, DFW225, DFW300, DFW375

The TECNIS Simplicity™ Delivery System is used to fold and assist in inserting the TECNIS Synergy™ Toric II IOLs that are indicated for primary implantation for the visual correction of aphakia and for reduction of refractive astigmatism in adult patients with greater than or equal to 1 diopter of preoperative corneal astigmatism, in whom a cataractous lens has been removed. Compared to an aspheric monofocal lens, the TECNIS Synergy™ Toric II IOLs mitigate the effects of presbyopia by providing improved visual acuity at intermediate and near distances to reduce eyeglass wear, while maintaining comparable distance visual acuity. The lens is intended for capsular bag placement only.

III. CONTRAINDICATIONS

There are no known contraindications.

IV. WARNINGS AND PRECAUTIONS

The warnings and precautions can be found in the labeling for the TECNIS Synergy™ IOLs.

V. DEVICE DESCRIPTION

The TECNIS SynergyTM IOLs, non-toric lens models ZFR00V/DFR00V and toric lens Models ZFW150/DFW150, ZFW225/DFW225, ZFW300/DFW300, ZFW375/DFW375, are ultraviolet light-absorbing posterior chamber IOLs that provide far vision comparable to an aspheric monofocal IOL and continuous 20/32 or better visual acuity through at least -3.0 D of defocus, which corresponds to distances ranging from approximately 33 cm to infinity. Compared to an aspheric monofocal IOL, the lens provides significantly improved near vision, including in low-light conditions. The lens material blocks UV and violet radiation up to a 10%T cutoff wavelength of 420 nm to 430 nm. In addition, the toric IOLs compensate for corneal astigmatism. TECNIS SynergyTM IOLs are to be positioned in the lens capsule to replace the optical function of the natural crystalline lens. Accommodation will not be restored. Table 1 below describes the physical characteristics of the lenses. The biconvex optic incorporates a proprietary wavefront-designed aspheric or toric-aspheric anterior optic, designed to compensate for corneal spherical aberration. The anteriorly located cylinder axis marks in the toric-aspheric optic denote the meridian with the lowest power and are to be aligned with the steep corneal meridian. The squared posterior edge of the aspheric and toric-aspheric anterior optic provide a 360-degree barrier and has a frosted design to reduce potential edge glare effects. The TECNIS Synergy™ IOLs share the same one-piece lens platform, the same material, lens geometry, general dimensions, overall manufacturing process, and packaging configuration as their parent lens models, and incorporate a proprietary diffractive technology on the posterior optic that is a combination of the multifocal and extended depth of focus (EDF) technologies derived from the optical parents. The unique design features of the TECNIS SynergyTM IOLs provide far vision comparable to an aspheric monofocal IOL and continuous 20/32 or better vision from 0.0 D through at least -3.0 D of defocus. This corresponds to a distance ranging from optical infinity to 33 cm. The posterior optic of the lens has a diffractive surface derived from a combination of EDF and multifocal technologies and is designed to correct chromatic aberration and provide a range of vision from distance to intermediate to near. The TECNIS SynergyTM IOLs demonstrated pupil-independent lens performance among the pupil sizes tested (>2.5 mm).

The optic is 6.0 mm in diameter and the lens has an overall diameter of 13.0 mm. The toric lenses incorporate perpendicular maximum and minimum radii of curvature and two sets of four (total of eight) axis orientation marks on their anterior optic surfaces that correct astigmatic refractive error when aligned properly with the patient's corneal astigmatism

(predicted postoperative steep corneal meridian). The physical properties of this lens are shown in **Figure 1** and the packaging configurations are shown in **Figure 2**. The implantation systems validated for use with the TECNIS SynergyTM IOLs packaged in the Daisywheel packaging (Models ZFR00V, ZFW150-375) are the UNFOLDER Platinum One Series Implantation system with the 1MTEC30 cartridge, the ONE SERIES Ultra Insertion System (the 1VPR30 Cartridge and the DK7786 or DK7791 inserters) and the UNFOLDER® EMERALD-AR Series Implantation System (with the 1CART30 Cartridge). The TECNIS SynergyTM IOLs packaged with the TECNIS SimplicityTM Delivery System (Models DFR00V, DFW150-375) are preloaded to provide a sterile, single-use, controlled and touch-free disposable system that functions as both the primary packaging and as part of an insertion system for IOL insertion into the eye during cataract surgery.

The conversion table for cylinder powers is provided below:

IOL Model	Cylinder Power (D)				
IOL Woder	IOL Plane (Labeled)	Corneal Plane*			
ZFW150	1.50	1.03			
ZFW225	2.25	1.54			
ZFW300	3.00	2.06			
ZFW375	3.75	2.57			

Light Transmittance: UV cut-off at 10% T for a spherical equivalent (SE) +5.0 diopter lens (thinnest), SE +20.0 diopter lens and a SE +34.0 diopter lens (thickest) are shown in **Figure 3**.

The JJSV TECNIS Toric Calculator is a web-based calculator tool that can be used to select the most appropriate TECNIS SynergyTM Toric II IOL that best suits the visual needs of the patient. The TECNIS Toric Calculator is developed and controlled by JJSV's Software Development Procedures.

Table 1 Summary of Physical Characteristics

Attribute	Non-Toric TECNIS Synergy™ IOL, Model ZFR00V and DFR00V	Toric TECNIS Synergy™ IOL, Model ZFW150-375 and DFW150-375			
Lens Design	1-piece acrylic IOL with aspheric anterior surface	1-piece acrylic IOL with aspheric toric anterior surface			
Lens Material	Violet-light filtering soft acrylic material with polyethylene glycol surface treatment				
Optic diameter	6.00 mm				
Overall Diameter	13.00 mm				
Haptic Style	C-Loop	C-Loop			
	Tumble polished	Squared, frosted			
Haptic angle	No angulation but offset from optic body				

Non-Toric TECNIS Synergy™ IOL, Model ZFR00V and DFR00V	Toric TECNIS Synergy™ IOL, Model ZFW150-375 and DFW150-375			
Spherical equivalent: +5.0 D to +34.0 D in 0.5 D increments	Spherical equivalent: +5.0 D to +34.0 D in 0.5 D increments			
	Cylinder power: Model ZFW150/DFW150: 1.50D Model ZFW225/DFW225: 2.25D Model ZFW300/DFW300: 3.00D Model ZFW375/DFW375: 3.75D			
0.0	Model ZFW150/DFW150: 1.03D Model ZFW225/DFW225: 1.54D Model ZFW300/DFW300: 2.06D Model ZFW375/DFW375: 2.57D			
1.471 (35°C) Through -3.0D				
	TECNIS Synergy TM IOL, Model ZFR00V and DFR00V Spherical equivalent: +5.0 D to +34.0 D in 0.5 D increments 0.0			

Figure 1
Mechanical Drawings
TECNIS Synergy™ IOLs
TECNIS Synergy™ Toric II IOLs

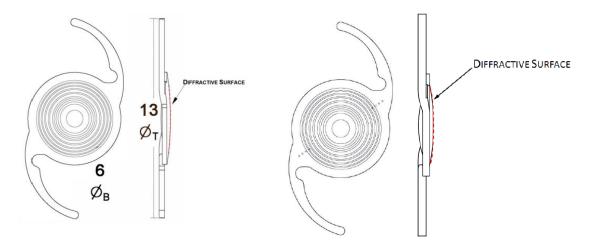


Figure 2
Packaging Configurations

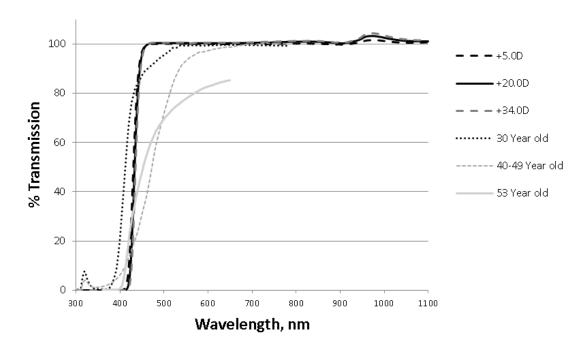

Daisywheel Packaging

Figure 3
Spectral Transmittance Curve

Legend:

Spectral transmittance curve of a typical 5-diopter IOL (thinnest). UV(420): UV cut-off at 10%T is 420 nm. Spectral transmittance curve of a typical 20-diopter IOL. UV(424): UV cut-off at 10%T is 424 nm. Spectral transmittance curve of a typical 34-diopter IOL (thickest). UV(426): UV cut-off at 10%T is 426 nm. Spectral transmittance curve of crystalline lenses: 30 year old and 40-49 year old from Artigas, J.M., Felipe, A., Navea, A., Fandino, A., & Artigas, C. Spectral transmission of the human crystalline lens in adult and elderly persons: color and total transmission of visible light. Invest Ophthalmol Vis Sci (2012);53(7):4076-4084. 53 year old from Boettner, E.A., and Wolter J.R. Transmission of the Ocular Media. Investigative Ophthalmology. 1962;1:776-783.

VI. ALTERNATIVE PRACTICES AND PROCEDURES

There are several other alternatives for the correction of aphakia resulting from surgical cataract removal (i.e., for patients who have had a cataractous lens removed). Nonsurgical options include eyeglasses or contact lenses. Surgical options come in the form of intraocular lenses, which may be monofocal, multifocal, extended depth of focus, toric or accommodative, depending on the patient's needs, expectations, and lifestyle. Each alternative has its own advantages and disadvantages. A patient should fully discuss these alternatives with his/her physician to select the method that best meets expectations and lifestyle.

VII. MARKETING HISTORY

The TECNIS Synergy™ IOLs in select models are currently commercially available in Australia, Canada, European Union, India, New Zealand, Singapore, and many other countries in Latin America, the Middle East-Africa region, and Asia Pacific. The lenses have not been withdrawn or recalled from any country for any reason related to safety or effectiveness.

VIII. POTENTIAL ADVERSE EFFECTS OF THE DEVICE ON HEALTH

Potential complications generally associated with cataract surgery include, but are not limited to: endophthalmitis/intraocular infection, hypopyon, hyphema, IOL dislocation, persistent cystoid macular edema, pupillary block, retinal detachment/tear, persistent corneal stromal edema, persistent uveitis, persistent raised intraocular pressure (IOP) requiring treatment (e.g., AC tap), retained lens material, or toxic anterior segment syndrome, or any other adverse event that leads to permanent visual impairment or requires surgical or medical intervention to prevent permanent visual impairment.

Adverse events that may be associated with use of the device include: IOL dislocation, tilt or decentration, visual symptoms requiring lens removal, residual refractive error, secondary surgical intervention (including IOL repositioning or removal).

For the specific adverse events that occurred during the TECNIS SynergyTM IOL clinical study, please see the Summary of Primary Clinical Studies section below.

IX. SUMMARY OF NONCLINICAL STUDIES

Nonclinical studies performed on either parent devices or subject devices demonstrate the safety and effectiveness of the TECNIS SynergyTM IOLs. The results of these studies are summarized below.

A. <u>Laboratory Studies</u>

Physicochemical Testing

The TECNIS Synergy™ IOLs use the same lens material as the material parent, the TECNIS OptiBlue 3-Piece IOL, Model ZV9003 (P980040/S035); therefore, physicochemical and biological data for these associated lenses are deemed applicable to the subject devices. All physicochemical reports pertaining to the SENSAR violet-light filtering soft acrylic material were previously submitted to FDA in 2006 as part of the 180-Day PMA Supplement for the material parent TECNIS OptiBlue 3 Piece IOL, Model ZV9003 (P980040/S035). P980040 served as the parent lens for the aforementioned submission to which an SSED is available. The physicochemical characterization of the TECNIS Synergy™ IOL material met the requirements of ISO 11979-5, Ophthalmic Implants – Intraocular Lenses – Part 5: Biocompatibility and EN ISO 10993-1, Biological Evaluation of Medical Devices – Part 1: Evaluation and Testing Within a Risk Management Process. The physicochemical tests are summarized in **Table 2.** All acceptance criteria for physicochemical testing were met.

 $\begin{tabular}{ll} Table 2 \\ Physicochemical Test Summary: \\ TECNIS Synergy^{TM} IOLs, \\ Indicating Relationship to the SENSAR^{®} AR40e IOL \\ \end{tabular}$

mulcating relationship to the BENDAR ARTOL TOL				
Physicochemical Tests	Results of Testing			
Exhaustive Extraction	Equivalent to SENSAR soft acrylic IOL, Model AR40e (P980040)			
Leachables	Equivalent to SENSAR soft acrylic IOL, Model AR40e (P980040)			
Insoluble Inorganics	No hazardous components identified			
Hydrolytic Stability	Stable to 5 years equivalent age			
Photostability	Stable to 20 years equivalent age			
Nd:YAG laser	Equivalent to SENSAR soft acrylic IOL, Model AR40e (P980040)			

Note: The SENSAR® AR40e IOL has the OptiEdge design and was approved in the same PMA (P980040) as the SENSAR® AR40 IOL, which has a rounded optic edge design.

B. Animal Studies

Biological Testing

The TECNIS SynergyTM IOLs are made of the same soft acrylic violet-filtering material and have the same manufacturing contact materials previously qualified with the material parent, the TECNIS OptiBlue 3-Piece IOL, Model ZV9003 (P980040/S035). All physicochemical reports pertaining to the SENSAR® violet-light filtering soft acrylic material was previously submitted to FDA in 2006 as part of the 180-Day PMA Supplement for the material parent TECNIS OptiBlue 3 Piece IOL, Model ZV9003 (P980040/S035). P980040 served as the parent lens for the aforementioned submission to which an SSED is available. The biocompatibility studies were performed in accordance with the requirements in ISO 10993, Biological Evaluation of Medical Devices, and 11979-5 Ophthalmic Implants – Intraocular Lenses – Part 5: Biocompatibility guidelines, to establish a complete profile of the IOL material. The results are summarized in **Table 3**. All acceptance criteria for biocompatibility were met.

Table 3 Biocompatibility Test Summary: TECNIS SynergyTM IOL

TECHIS Synergy	D I AT II		
Biological Tests	Results of Testing		
Cytotoxicity: (MEM)	None		
Agar Diffusion Solid Contact & Saline Extract)	Non-cytotoxic		
Percentage Inhibition of Cell Growth Method	Non-inhibitory to cell growth		
Guinea Pig Maximization			
a. Saline Extract	Non-sensitizing		
b. Sesame Oil Extract	_		
Non-Ocular Implant Study	Passed		
(Six-Week Subcutaneous Implantation in Rabbits)			
Six-Month Rabbit Intraocular Study	Passed		
Genotoxicity Testing			
(Salmonella typhimurium and Escherichia coli	Non-genotoxic, non-mutagenic		
reverse mutation assay)			
Genotoxicity testing (chromosomal aberration			
assay in Chinese hamster ovary cells)	Non-clastogenic		
_	Non-mutagenic under short and		
Genotoxicity Testing (Mouse Lymphoma Forward	long exposure conditions		
Mutation Assay)			

C. Additional Studies

Optical/Mechanical Testing

Dimensional, optical, and mechanical tests were conducted on finished, sterilized, TECNIS SynergyTM IOLs to verify the conformance to applicable sections of ISO 11979-2, Ophthalmic Implants-Intraocular Lenses-Part 2: Optical Properties and Test Methods; ISO 11979-3, Ophthalmic Implants-Intraocular Lenses Part 3: Mechanical Properties and Test Methods; ANSI Z80.30, American National Standard for Ophthalmics: Toric Intraocular Lenses; ANSI Z80.35, American National Standard for Ophthalmics: Extended Depth of Focus Intraocular Lenses; and ANSI Z80.12, American National Standard for Ophthalmics: Multifocal Intraocular Lenses. As part of mechanical assessment, folding and insertion testing was also performed to verify recovery of lens properties (e.g., optical, etc.) following simulated insertion. Here, the TECNIS SynergyTM IOLs passed all predetermined requirements established in the aforementioned standards where applicable and internal product specifications. Table 4 summarizes the results of the dimensional, optical, and mechanical testing. Testing for the TECNIS SimplicityTM Delivery System was completed on representative lenses and was focused on optical and mechanical testing on attributes that can be impacted by a change in the storage and delivery of the device; specifically, the recovery of properties following simulated surgical manipulation pertinent to the preloaded IOLs, according to testing requirements from ISO 11979-2 and ISO 11979-3.Here, the lenses met the acceptance criteria and met all predetermined requirements established in the aforementioned standards where applicable and internal product specifications. Table 5 summarizes the results of the recovery of properties following simulated surgical manipulation for the TECNIS Simplicity[™] Delivery System.

Table 4
Dimensional, Optical and Mechanical Test Results

Requirements	Results
Optical Requirements	
Diopter power	Passed
Cylinder Power (TECNIS Synergy TM Toric II IOLs only)	Passed
Image quality	Passed
Spectral transmittance	Passed
Axis Orientation Mark(s) (toric TECNIS Synergy TM IOLs only)	Passed
Mechanical and Dimensional Testing	
Overall Diameter	Passed

Requirements	Results
Vault Height	Passed
Sagitta	Passed
Clear Optic diameter	Passed
Optic Body Diameter	Passed
Axial Displacement in Compression	Passed
Optic Decentration	Passed
Optic Tilt	Passed
Angle of Contact	Passed
Compression Force and Decay	Passed
Dynamic Fatigue Durability	Passed
Surgical Manipulation	Passed
Surface and Bulk Homogeneity	Passed
Recovery of Properties Following Sin	mulated Surgical Manipulation
Diopter power	Passed
Cylinder Power (TECNIS Synergy TM Toric II IOLs only)	Passed
Image quality	Passed
Axis Orientation Mark(s) (TECNIS Synergy TM Toric II IOLs only)	Passed
Overall Diameter	Passed
Sagitta	Passed
Surface and Bulk Homogeneity	Passed

Testing	Results
Dimensional Testing of the IOLs	Passed
Optical Testing of the IOLs (ISO 11979-2)	Passed

Testing	Results
Mechanical Testing of the IOLs (ISO 11979-3)	Passed
Functional Testing of the IOLs	Passed
Characterization Testing for IOL Delivery	The lens delivery factors were identified and further characterized to ensure the optimal lens delivery using the TECNIS Simplicity TM Delivery System.

Microbiology, Sterilization, and Shelf Life Adoption / Testing

The lens material and platform, geometry, dimensions, manufacturing method, materials and equipment, sterilization method, and packaging materials and configuration of the TECNIS SynergyTM IOLs packaged in the Daisywheel configuration are the same as those of the FDA-approved monofocal IOL, the TECNIS 1-Piece OptiBlue IOL, Model ZCB00V (P980040/S035), as the reference lens models. The TECNIS SynergyTM IOLs in the Daisywheel configuration will be labeled with a 5-year shelf life. Sterilization validations performed for this associated lens model are deemed applicable to the subject lenses and assures a minimum sterility assurance level of 10⁻⁶. A 3-year shelf life was established for the TECNIS SynergyTM IOLs packaged in the TECNIS SimplicityTM Delivery System based on a 3-year shelf life approved by FDA for the TECNIS SimplicityTM Delivery System in P980040/S098. These tests were conducted in accordance with the following standards and United States Pharmacopeia chapters:

- ANSI/AAMI/ISO 11135-1, Sterilization of Healthcare Products Ethylene Oxide Part 1: Requirements for Development, Validation, and Routine Control of a Sterilization Process
- ISO 10993-7, Biological evaluation of medical devices Part 7: Ethylene oxide sterilization residuals
- USP <85>, Bacterial Endotoxins Test
- ISO 11979-6, Ophthalmic Implants Intraocular Lenses Part 6: Shelf-life and transport stability.

X. SUMMARY OF PRIMARY CLINICAL STUDY

The applicant performed a clinical study to establish a reasonable assurance of safety and effectiveness of the TECNIS SynergyTM IOL, Model ZFR00V under IDE #G190057. Data from this clinical study were the basis for the PMA approval decision. A summary of the clinical study is presented below.

The TECNIS SynergyTM Toric II IOLs (Models ZFW150, ZFW225, ZFW300, ZFW375) involved imposing the toric feature from the toric design parents (P980040/S039): TECNIS Toric 1-Piece IOL, Models ZCT150, ZCT225, ZCT300 and ZCT400. Since the study for TECNIS SynergyTM IOL Model ZFR00V established safety, and the applicant has approved toric parent IOLs, additional clinical data was not required to support safety and effectiveness of the toric models, as the only difference is in cylinder powers.

A. Study Design

Subjects were treated between August 13, 2019 and November 26, 2019. The database for this PMA reflected data collected through June 18, 2020 (6-month visit) and included 272 subjects. There were 15 investigational sites.

The study was a prospective, multicenter, bilateral, comparative, three-way masked (Sponsor, subject, and evaluator), randomized, 6-month clinical investigation of the safety and effectiveness of the TECNIS SynergyTM IOL (study lens) compared to the monofocal TECNIS 1-Piece IOL, Model ZCB00 (control lens). Up to 300 subjects were to be enrolled to achieve approximately 270 bilaterally implanted subjects, resulting in approximately 244 evaluable subjects (122 subjects per IOL group) at 6 months. Each site was to implant a minimum of 20 subjects, and no site was to have implanted more than 25% of the enrollment total.

The statistical analyses were frequentist. The purpose of this study was to evaluate the safety and effectiveness of the investigational TECNIS SynergyTM IOL in comparison to a monofocal control IOL. The 6-month postoperative visit was the key analysis time point for all endpoints. Data for other visits were also included in the final analysis.

The clinical hypotheses were that the investigational TECNIS SynergyTM IOL would provide improved distance corrected near visual acuity (DCNVA), as well as decreased spectacle wear compared to the monofocal control, TECNIS 1-Piece IOL, Model ZCB00. The mean monocular best corrected distance visual acuity (BCDVA) of the investigational TECNIS SynergyTM IOL was to be non-inferior to that of the monofocal control IOL Model ZCB00. Complication and adverse event (AE) rates associated with the investigational TECNIS SynergyTM IOL was to be within the rates for posterior chamber IOLs referenced in ISO 119797:2018.

Study sample sizes were based on the ISO 22979 (Technical Report: Ophthalmic implants — Intraocular lenses — Guidance on assessment of the need for clinical investigation of intraocular lens design modifications) requirements for a Level B modification of a parent lens as well as the requirement for contrast sensitivity testing. The minimum requirements

were 100 evaluable test subjects per IOL group for Level B, and 122 evaluable test subjects per IOL group for contrast sensitivity. The screen failure rate was assumed to be 10%, and the drop-out rate was assumed to be 10%. To achieve approximately 122 evaluable subjects in each IOL group at 6 months postoperative and allowing for screen failures and drop-out, 150 subjects were to be enrolled in each IOL group to achieve approximately 135 bilaterally implanted subjects in each IOL group.

The control was an active alternative treatment [TECNIS 1-Piece IOL, Model ZCB00 (monofocal)], which is a legally marketed alternative with similar indications for use, except that it is not intended to provide improved vision at intermediate and near distances.

1. Clinical Inclusion and Exclusion Criteria

Enrollment in the Clinical Investigation of the Safety and Effectiveness of an Investigational Model of the TECNIS Intraocular Lens (Model ZFR00V) study was limited to subjects who met the following inclusion criteria:

- Minimum 22 years of age
- Bilateral cataracts for which posterior chamber IOL implantation had been planned
- Preoperative BCDVA of 20/40 Snellen or worse with or without a glare source
- Potential for postoperative BCDVA of 20/30 Snellen or better
- Normal corneal topography with a predicted postoperative corneal astigmatism of less than 1.00 D in both eyes including posterior corneal astigmatism (PCA)
- Clear intraocular media other than cataract in each eye
- Availability, willingness, and sufficient cognitive awareness to comply with examination procedures and study visits
- Signed informed consent and HIPAA authorization or equivalent documentation necessary to comply with applicable privacy laws pertaining to medical treatment in the governing countries

Subjects were not permitted to enroll in the Clinical Investigation of the Safety and Effectiveness of an Investigational Model of the TECNIS Intraocular Lens (Model ZFR00V) study if they, or either eye, met any of the following exclusion criteria:

 Prior corneal refractive (laser-assisted in situ keratomileusis, laser-assisted subepithelial keratectomy, radial keratotomy, photorefractive keratectomy, etc.) or intraocular surgery, including prophylactic peripheral iridotomies and peripheral laser

- retinal repairs, or recent ocular trauma or ocular surgery that was not resolved/stable or may have affected visual outcomes or increased risk to the subject.
- Corneal abnormalities such as stromal, epithelial, or endothelial dystrophies (e.g., any observed guttata) that were predicted to cause visual acuity losses to a level worse than 20/30 Snellen during the study
- Inability to achieve keratometric stability for contact lens wearers
- Subjects with diagnosed degenerative visual disorders (e.g., macular degeneration or other retinal disorders) that were predicted to cause visual acuity losses to a level of 20/30 Snellen or worse during the study
- Subjects with conditions associated with increased risk of zonular rupture, including capsular or zonular abnormalities that may have led to IOL decentration or tilt, such as pseudoexfoliation, trauma, or posterior capsule defects
- Use of systemic or ocular medications that may, in the opinion of the Investigator, have confounded the outcome or increased the risk to the subject (e.g., poor dilation or a lack of adequate iris structure to perform standard cataract surgery)
- Acute, chronic, or uncontrolled systemic or ocular disease or illness that, in the opinion
 of the Investigator, would have increased the operative risk or confounded the
 outcome(s) of the study (e.g., poorly controlled diabetes, immunocompromised,
 connective tissue disease, suspected glaucoma, glaucomatous changes in the fundus or
 visual field, ocular inflammation, etc.).
- Any known ocular disease or pathology that, in the opinion of the Investigator, may have affected visual acuity, may have required surgical intervention during the course of the study (macular degeneration, cystoid macular edema, diabetic retinopathy, uncontrolled glaucoma, etc.), may have been expected to require retinal laser treatment or other surgical intervention during the course of the study (macular degeneration, cystoid macular edema, diabetic retinopathy, etc.).
- Subject was pregnant, planned to become pregnant, was lactating, or had another condition associated with the fluctuation of hormones that could have led to refractive changes
- Concurrent participation or participation within 60 days prior to preoperative visit in any other clinical trial

2. Follow-up Schedule

All subjects were scheduled to return for follow-up examinations as described in **Table 6**.

Table 6 Clinical Study Visit Schedule

Visit	EYES EVALUATED	EXAM	VISIT WINDOW		
1	Both Eyes	Preoperative Exam	Within 60 days prior to 1st surgery		
2	First Eye	Operative	0-60 days after preoperative exam		
3	First Eye	1 day	1-2 days postoperative		
4	First Eye	1 week ^a	7-14 days postoperative		
5	Second Eye	Operative ^a	No more than 30 days after 1 st eye surgery		
6	Second Eye	1 day	1-2 days postoperative		
7	Second Eye	1 week	7-14 days postoperative		
8	Both Eyes	1 month	30 - 60 days postoperative from 2 nd eye surgery ^b		
9	Both Eyes	6 months	120 - 180 days postoperative from 2 nd eye surgery ^b		

Shaded rows indicate study visits where both eyes are evaluated at the same visit

Preoperatively and postoperatively, the objective parameters measured during the study are presented in **Table 7**. Adverse events and complications were recorded at all visits. The key timepoints are shown in the tables summarizing safety and effectiveness (Section 3. Clinical Endpoints). Visual acuity testing included uncorrected distance visual acuity (UCDVA), best-corrected distance visual acuity (BCDVA), uncorrected intermediate visual acuity (UCIVA), distance-corrected intermediate visual acuity (DCIVA), uncorrected near visual acuity (UCNVA).

^a The 1-week exam for the first eye should have been completed prior to implanting the second eye.

^b If for any reason the second eye was not implanted, the first eye was to be examined for the 1-month study visit 37 to 67 days following the first-eye surgery and for the 6-month study visit 127 to 210 days following the first-eye surgery.

Table 7 Clinical Study Visit Schedule

Chincal Study Visit Schedule							
Examination (shaded lines indicate masked testing)	Preop	Op	1 day	1 week	1 month	6 months	
Informed consent, ocular history, inclusion/exclusion	X						
criteria, potential visual acuity, targeted refraction, IOL	Λ						
Lens power/serial number (masked), operative procedures		X					
Manifest refraction (Snellen preop; ETDRS postop)	X			X	X	X	
UCDVA – photopic, monocular			X	X	X	X	
UCDVA – photopic, binocular					X	X	
BCDVA – photopic, monocular (Snellen preop; ETDRS	X			X	X	X	
BCDVA – photopic binocular					X	X	
UCIVA – photopic, binocular at 66 cm					X	X	
DCIVA – photopic, monocular at 66 cm						X	
UCNVA – photopic, binocular at 40 cm					X	X	
DCNVA – photopic, monocular at 40 cm					X	X	
DCNVA – photopic, binocular at 40 cm					X	X	
DCNVA – photopic, monocular at 33 cm						X	
Defocus – distance-corrected, monocular (first eye)						X	
Defocus – distance-corrected, binocular					X		
Contrast sensitivity – monocular (first eye)						X	
Contrast sensitivity - binocular					X		
DCNVA – mesopic, monocular at 40 cm						X	
DCNVA – mesopic, binocular at 40 cm						X	
Pupil size						X	
Keratometry	X					X	
Intraocular pressure	X		X	X	X	X	
Biomicroscopic slit-lamp exam ^a	X		X	X	X	X	
Fundus exam with fundus visualization	X					X	
Adverse event assessment		X	X	X	X	X	
Ocular medications	X	X	X	X	X	X	
Ocular/visual symptoms (non-directed)	X		X	X	X	X	
Subject questionnaires	X				X	X	

^a Includes determination of medical and lens findings/complications.

3. Clinical Endpoints

With regard to safety, the primary and co-primary safety endpoints and success criteria were:

- The rate of secondary surgical interventions (SSIs) related to optical properties of the lens in first eyes of the TECNIS Synergy[™] group was analyzed using descriptive statistics and compared to that of the control group.
- All safety and performance endpoint (SPE) AEs, including total SSI, reported among first eyes of the TECNIS Synergy[™] group were compared to ISO SPE rates. The success criterion is that the AE rate in the test group is not statistically significantly higher than the ISO SPE rate (ISO 11979-7:2018 safety and performance endpoint rates).
- All other non-SPE AEs were analyzed using descriptive statistics comparing the two IOL groups.
- Rate of monocular BCDVA 20/40 or better among first eyes in the TECNIS Synergy[™] group was compared to the ISO SPE rate.

In addition, the secondary safety endpoint was the monocular (first eyes) best-corrected distance contrast sensitivity for the TECNIS SynergyTM group were compared to control (mesopic with and without glare at 1.5, 3.0, 6.0, and 12.0 cpd and photopic with glare at 3.0, 6.0, 12.0, and 18.0 cpd).

With regard to effectiveness, the primary effectiveness endpoint was monocular photopic DCNVA at 40 cm. Success criteria were a statistically significant improvement in mean monocular photopic DCNVA for first eyes in the TECNIS SynergyTM group vs. first eyes in the control group and a mean DCNVA for the TECNIS SynergyTM group of at least 0.2 logarithm of the minimum angle of resolution (LogMAR).

The secondary effectiveness endpoints included statistically and clinically significant improvements in mean LogMAR distance corrected intermediate visual acuity (DCIVA) at 66 cm and DCNVA at 33 cm for first eyes in the TECNIS Synergy[™] group vs. the control, with a mean of at least 0.2 LogMAR. Other secondary effectiveness endpoints included non-inferior (within 0.1 LogMAR) monocular photopic BCDVA for first eyes in the TECNIS Synergy[™] group vs. the control, monocular distance-corrected defocus curve for first eyes in the TECNIS Synergy[™] group demonstrating 0.2 LogMAR or better from 0.0 D to -2.5 D of defocus, and a statistically significant difference in the proportion of Synergy[™] compared to control subjects who reported wearing glasses "None of the time" for all four conditions (distance, intermediate, near, and overall vision), as determined from the Patient Reported Spectacle Independence Questionnaire. In addition, clinical significance was determined by:

Summary of Safety and Effectiveness Data (SSED) TECNIS Synergy™ IOLs, Models ZFR00V, DFR00V, ZFW150, ZFW225, ZFW300, ZFW375, DFW150, DFW225, DFW300 and DFW375

- 1) At least 50% of subjects in the Synergy[™] group who reported wearing glasses "None of the time" for all four conditions (distance, intermediate, near, and overall vision), and
- 2) The proportion of subjects in the SynergyTM group who reported wearing glasses or contacts "None of the time" for all four conditions was at least 25 percentage points higher than that for the control group.

B. Accountability of PMA Cohort

At the time of database lock, of 297 patients enrolled in the PMA study, (89.9% (267/297) patients are available for analysis at the completion of the study at the 6-month post-operative visit.

Of the 272 subjects implanted, 135 were in the SynergyTM group, and 137 were in the control group; all 272 subjects were bilaterally implanted with the same IOL model in both eyes in the PMA study. At the time of database lock, 97.0% (131/135) of SynergyTM first eyes (**Table 8**), and 95.6% (131/137) of control first eyes (**Table 9**) were available for analysis at the 6-month final study exam.

Table 8
Accountability
First Eyes – TECNIS SynergyTM N = 135

	1 Day 1 Week			1 Mor	nth	6 Months		
Subject status	n	%	n	%	n	%	n	%
Available for Analysis	135	100.0	135	100.0	135	100.0	131	97.0
Missing Subjects	0	0.0	0	0.0	0	0.0	4	3.0
 Discontinued 	0	0.0	0	0.0	0	0.0	1	0.7
 Missed visit 	0	0.0	0	0.0	0	0.0	0	0.0
 Not seen but accounted for 	0	0.0	0	0.0	0	0.0	2	1.5
o Lost-to-follow-up	0	0.0	0	0.0	0	0.0	1	0.7
Active	0	0.0	0	0.0	0	0.0	0	0.0
Percent Accountability	-	100.0	-	100.0	-	100.0	-	97.8

Table 9
Accountability
First Eyes – TECNIS monofocal
N = 137

	1 Day 1 Week 1 Month			nth	6 Moi	nths		
Subject status	n	%	n	%	n	%	n	%
Available for Analysis	137	100.0	137	100.0	136	99.3	131	95.6
Missing Subjects	0	0.0	0	0.0	1	0.7	6	4.4
 Discontinued 	0	0.0	0	0.0	0	0.0	0	0.0
 Missed visit 	0	0.0	0	0.0	0	0.0	0	0.0
Not seen but accounted for	0	0.0	0	0.0	1 ^b	0.7	5	3.6
o Lost-to-follow-up	0	0.0	0	0.0	0	0.0	1	0.7
Active	0	0.0	0	0.0	0	0.0	0	0.0
Percent Accountability	-	100.0	-	100.0	-	99.3	-	95.6

C. Study Population Demographics and Baseline Parameters

The demographics of the study population are typical for a randomized, prospective, multicenter clinical study performed in the US.

Table 10 presents demographic information for SynergyTM and control subjects. The mean age was 68.5 years (standard deviation (SD) 7.1) in the SynergyTM group and 68.5 years (SD 7.7) in the control group. Female subjects comprised more than half of both the SynergyTM group (69.6%; 94/135) and the control group (65.7%; 90/137). No statistically significant differences were found for age, sex, race, ethnicity, or iris color between the two IOL groups.

Table 11 presents the preoperative parameters for Synergy[™] and control subjects. The differences in the means between IOL groups were very small for preoperative intended mean refractive spherical equivalent (MRSE) (difference of $0.036\,\mathrm{D}$ first eyes and $0.068\,\mathrm{D}$ second eyes), preoperative keratometric cylinder (difference of $-0.019\,\mathrm{D}$ first eyes and $-0.030\,\mathrm{D}$ second eyes), and the IOL power implanted (difference of $0.361\,\mathrm{D}$ first eyes and $0.361\,\mathrm{D}$ second eyes).

 $\begin{array}{c} \textbf{Table 10} \\ \textbf{Demographics} \\ \textbf{Synergy}^{^{\text{\tiny M}}} \textbf{ and Control Subjects} \end{array}$

		${\stackrel{\bf TECNIS}{Synergy}}^{{\scriptscriptstyle {\rm TM}}}$	TECNIS monofocal	P- Value
Age (years)	N	135	137	0.9940ª
-	Mean	68.5	68.5	

		TECN	NIS	TECN	IIS	
		Syner	$\mathbf{g}\mathbf{y}^{^{\mathrm{TM}}}$	mono	focal	P- Value
	SD	7.1		7.7		
	Median	70		69		
	Min	48		46		
	Max	85		92		
	Not Reported	0		0		
		n	%	n	%	
Age Group	<60	17	(12.6%)	17	(12.4%)	
	60 to 69	50	(37.0%)	57	(41.6%)	
	70 to 79	62	(45.9%)	56	(40.9%)	
	≥80	6	(4.4%)	7	(5.1%)	
	Total n	135	-	137	-	
	Not Reported	0	-	0	-	
Sex	Male	41	(30.4%)	47	(34.3%)	0.5185^{b}
	Female	94	(69.6%)	90	(65.7%)	
	Total n	135	-	137	-	
	Not Reported	0	-	0	-	
Race	Asian (including Indian)	3	(2.2%)	1	(0.7%)	0.6200^{b}
	Black	15	(11.1%)	19	(13.9%)	
	Native Hawaiian/Pacific Islander	1	(0.7%)	0	(0.0%)	
	Caucasian	114	(84.4%)	116	(84.7%)	
	Other Race	2	(1.5%)	1	(0.7%)	
	Total n	135	-	137	-	
	Not Reported	0	-	0	-	
Ethnicity	Hispanic/Latino	8	(5.9%)	7	(5.1%)	0.7969 ^b
	Not Hispanic/Latino	127	(94.1%)	130	(94.9%)	
	Total n	135	-	137	-	
	Not Reported	0	-	0	-	
Iris Color	Blue/Gray	42	(31.1%)	37	(27.0%)	0.6008 ^b
	Brown/Black	54	(40.0%)	63	(46.0%)	
	Green/Hazel	39	(28.9%)	37	(27.0%)	
	Total n	135	-	137	-	
	Not Reported	0	-	0	-	

^{%=}n/Total n

 ^a P-value from two-sided two sample t-test
 ^b P-value from two-sided Fisher's exact test

Table 11
Mean Intended MRSE and Preoperative Keratometric Cylinder
First Eyes – TECNIS Synergy[™] (N=135) and TECNIS monofocal (N=137)

				Standard			
Variable	IOL	n	Mean	Deviation	Median	Minimum	Maximum
Intended MRSE (D)	ZFR00V	135	-0.009	0.097	-0.010	-0.24	0.19
	Control	137	-0.045	0.114	-0.050	-0.35	0.22
	Difference	-	0.036	0.106	-	-	_
Keratometric Cylinder (D)	ZFR00V	135	0.473	0.247	0.460	0.00	1.13
	Control	137	0.492	0.241	0.470	0.00	1.31
	Difference	-	-0.019	0.244	-	-	-

D. Safety and Effectiveness Results

1. Safety Results

The analysis of safety was based on the safety cohort of 135 subjects with SynergyTM bilaterally and 137 subjects with control bilaterally and available for the 6-month evaluation.

The first co-primary safety endpoint was the rate of secondary surgical interventions (SSIs) related to the optical properties of the IOL in first operative eyes. One SSI related to the optical properties of the IOL was reported in the clinical study among all implanted eyes in the Synergy[™] group. The second co-primary safety endpoint was the rates of cumulative and persistent adverse events in first operative eyes at 6 Months in comparison to ISO 11979-7 Safety and Performance Endpoints grid (SPE rates). All SPE rates for the Synergy[™] group at 6 months were below those specified in ISO 11979-7:2018 (12-month rates).

The third co-primary safety endpoint was the rate of all non-SPE adverse events in the study. The fourth co-primary safety endpoint was met, where the rate of monocular BCDVA 20/40 or better among first eyes was better than the rate specified in ISO 11979-7:2018.

Secondary safety endpoints included assessments of monocular and binocular contrast sensitivity with and without glare for photopic and mesopic conditions. Log contrast sensitivity was measured to be lower for the SynergyTM group than control at higher spatial frequencies, however the differences were not clinically meaningful.

The key safety outcomes for this study are presented below in **Tables 12 to 16** (adverse effects) and **Figures 4-9** (contrast sensitivity).

Adverse effects that occurred in the PMA clinical study:

During the study, reports of serious adverse events (SAEs) and serious adverse device effects (SADEs) were low for both lens groups. None of the events reported were unanticipated. One SynergyTM subject had lens decentration (1/135, 0.7%) in both eyes.

Table 12 presents the incidence of serious and non-serious medical findings/adverse events at 6-months for all SynergyTM and monofocal control eyes.

Among first and second eyes with the TECNIS Synergy™ IOL, ocular AEs occurring at 6 months with a rate of 2% or more were: posterior capsule opacification (116/263; 44.1%), posterior vitreous detachment (76/263; 28.9%), dermatochalasis (56/263; 21.3%), dry eye/superficial punctate keratopathy/epithelial erosion/tear film insufficiency (50/263; 19.0%), blepharitis/meibomianitis (40/263; 15.2%), posterior capsular striae/wrinkles (16/263; 6.1%), pinguecula (14/263; 5.3%), periorbital fat herniation (14/263; 5.3%), and ptosis (6/263; 2.3%).

Among first and second eyes with the control IOL, ocular AEs occurring at 6 months with a rate of 2% or more were: posterior capsule opacification (106/262; 40.5%), posterior vitreous detachment (76/262; 29.0%), dermatochalasis (49/262, 18.7%), dry eye/superficial punctate keratopathy/epithelial erosion/tear film insufficiency (46/262; 17.6%), blepharitis/meibomianitis (48/262; 18.3%), pinguecula (15/262; 5.7%), posterior capsular striae/wrinkles (10/262; 3.8%), periorbital fat herniation (10/262; 3.8%), arcus (9/262; 3.4%), and corneal scar (6/262; 2.3%).

Table 12
Medical Findings/Adverse Events at 6 Months
TECNIS Synergy[™] and TECNIS Monofocal
Pooled (First and Second) Eyes
Safety Population

	TECNIS Synergy N=263		TECNIS Monofocal N=262		
Medical Findings	n	%	n	%	
Posterior capsule opacification (any)	116	44.1	106	40.5	
Posterior vitreous detachment	76	28.9	76	29.0	
Dermatochalasis	56	21.3	49	18.7	
Dry eye/superficial punctate keratopathy/ epithelial erosion/tear film insufficiency	50	19.0	46	17.6	
Blepharitis/meibomianitis	40	15.2	48	18.3	
Posterior capsular striae/wrinkles (any)	16	6.1	10	3.8	
Periorbital fat herniation	14	5.3	10	3.8	

<u> </u>	TECNIS		TE(CNIS
		ergy		ofocal
		263	N=	262
Medical Findings	n	%	n	%
Pinguecula	14	5.3	15	5.7
Ptosis	6	2.3	4	1.5
Chorioretinal atrophy	5	1.9	5	1.9
Congenital optic nerve anomaly	5	1.9	0	0.0
Epiretinal membrane	5	1.9	1	0.4
Corneal dystrophy	4	1.5	4	1.5
Drusen	4	1.5	5	1.9
Eye nevus	4	1.5	1	0.4
Guttata	4	1.5	2	0.8
Corneal scar	3	1.1	6	2.3
Optic nerve cup/disc ratio increased	3	1.1	0	0.0
Pterygium	3	1.1	2	0.8
Retinal degeneration	3	1.1	0	0.0
Retinal pigment epithelium (RPE) changes	3	1.1	2	0.8
Arcus	2	0.8	9	3.4
Conjunctival hyperemia/injection	2	0.8	0	0.0
Conjunctivitis	2	0.8	0	0.0
Conjunctivochalasis	2	0.8	0	0.0
Corneal disorder	2	0.8	0	0.0
Corneal pigmentation ^b	2	0.8	2	0.8
Heterophoria	2	0.8	0	0.0
Macular degeneration	2	0.8	0	0.0
Optic nerve cupping	2	0.8	0	0.0
Optic nerve hypoplasia	2	0.8	0	0.0
Telangiectasia	2	0.8	0	0.0
Anterior chamber cells (if any)	1	0.4	4	1.5
Chorioretinal scar	1	0.4	1	0.4
Corneal opacity	1	0.4	1	0.4
Eyelid cyst	1	0.4	2	0.8
Lagophthalmos	1	0.4	0	0.0
Macular hole	1	0.4	0	0.0
Retinal anomaly congenital	1	0.4	1	0.4
Retinal scar	1	0.4	0	0.0
Vitreous degeneration	1	0.4	0	0.0
Anterior chamber flare (if any)	0	0.0	3	1.1
Cornea verticillata	0	0.0	2	0.8
Corneal edema (if any) ^b	0	0.0	2	0.8

	TECNIS Synergy N=263		TECNIS Monofocal N=262	
Medical Findings	n	%	n	%
Iris transillumination defect ^b	0	0.0	2	0.8
Madarosis	0	0.0	2	0.8
Presumed ocular histoplasmosis syndrome	0	0.0	2	0.8
Retinal hemorrhage	0	0.0	2	0.8
Elevated IOP/ocular hypertension ^b	0	0.0	1	0.4
Hyalosis asteroid	0	0.0	1	0.4
Retinal exudates	0	0.0	1	0.4
Retinal tear ^b	0	0.0	1	0.4
Strabismus	0	0.0	1	0.4
Other	0	0.0	2 ^a	0.8^{a}

^a Other includes orbital fat prolapse and negative dysphotopsia.

The incidence rates of persistent (**Table 13**) and cumulative (**Table 14**) adverse events for all implanted SynergyTM eyes were compared to the ISO SPE (safety and performance endpoint) rates. There were no persistent medical findings/adverse events per the ISO SPE at 6 months in the SynergyTM group. The rate of cumulative medical findings/adverse events reported in SynergyTM group were not statistically significantly higher than the specified ISO SPE rates.

All SSIs during the study are presented by IOL group in **Table 15**. Five SAEs/SADEs required SSIs for treatment: one first eye (0.7%, 1/135 for SynergyTM vs. 0%, 0/137 for control) and four second eyes (2.2%, 3/135 for SynergyTM vs. 0.7%, 1/137 for control). There was one (0.7%, 1/135) SSI related to optical properties of the lens in the SynergyTM group.

^b As defined by AAO IOL Task Force (Masket *et al.*, 2016).

Table 13
6-Month Persistent Adverse Events vs. ISO 11979-7 SPE 12-Month Rates
TECNIS Synergy™

Persistent Medical Complication/Adverse			Eyes 131		d Eyes
Event	%	n	%	n	%
Corneal edema	0.3	0	0.0	0	0.0
Cystoid macular edema	0.5	0	0.0	0	0.0
Iritis	0.3	0	0.0	0	0.0
Raised IOP requiring treatment	0.4	0	0.0	0	0.0

Table 14
6-Month Cumulative Adverse Events vs. ISO 11979-7 SPE 12-Month Rates
TECNIS Synergy™

Cumulative Medical Complication/ Adverse Event	ISO SPE Rate		t Eyes =135		nd Eyes =135
	%	n	%	n	%
Cystoid macular edema	3.0	1	0.7	1	0.7
Hypopyon ^a	0.3	0	0.0	1	0.7*
Endophthalmitis	0.1	0	0.0	0	0.0
Lens dislocated from posterior chamber	0.1	0	0.0	0	0.0
Pupillary block	0.1	0	0.0	0	0.0
Retinal detachment	0.3	0	0.0	0	0.0
Eyes with secondary surgical intervention	0.8	1	0.7	3	2.2*
Device related	_	1	0.7	1	0.7
Not device related	-	0	0.0	2	1.5*

^{% = (}n/N) *100

Table 15
Secondary Surgical Interventions by IOL Group

TECNIS Synergy [™]			TE	CNIS n	monofocal		
	Eyes 135	Ey	ond yes 135		Eyes 137	Ey	ond yes 137
n	%	n	%	n	%	n	%

Secondary Surgical Interventions (SSIs)

^{*} Rate is not statistically significantly higher than ISO SPE rate (p>0.05).

^aAssociated with a single report of toxic anterior segment syndrome (TASS), which occurred in same eye.

	TECNIS Synergy TM				TECNIS monofocal			
	First Eyes N=135		Second Eyes N=135		First Eyes N-137		Second Eyes N=137	
	n	%	n	%	n	%	n	%
Lens Removal	1 ^a	0.7	0	0.0	0	0.0	0	0.0
Aspiration (Removal) of Lens Fragments	0	0.0	1 ^b	0.7	0	0.0	0	0.0
Retinal Repair	0	0.0	1 ^c	0.7	0	0.0	1 ^e	0.7
Treatment Injection	0	0.0	1^{d}	0.7	0	0.0	0	0.0
TOTAL Eyes with SSIs	1	0.7	3	2.2	0	0.0	1	0.7

^{% = (}n/N) *100

Contrast Sensitivity

Monocular best-corrected distance contrast sensitivity was evaluated under three lighting conditions: mesopic without glare, mesopic with glare, and photopic with glare. The secondary safety endpoint was a comparison of the median monocular and binocular contrast sensitivity measurements at all spatial frequencies and all lighting conditions at 6 months. In all conditions, contrast sensitivity was measured to be generally lower for the Synergy[™] group than the control group (**Figures 4, 5, and 6**), especially under extremely high glare conditions. Glare setting used for testing was high enough to reduce the mesopic contrast sensitivity in both lens groups by at least 0.2 log units with a greater impact on mesopic contrast sensitivity for the Synergy[™] group (up to 0.448 log) than the control group (up to 0.392 log). However, lower contrast sensitivity measurements were not found to be associated with clinically significant impact to patient reported vision quality. In addition, median binocular contrast sensitivity measurements at all spatial frequencies and all lighting conditions at 1 month are presented in **Figures 7, 8,** and **9**.

^aSSI related to visual symptoms (optical properties of the lens). The second eye lens for same subject was removed after study exit for similar reason.

^bDue to retained lens material

^cDue to macular hole

^dDue to hypopyon and TASS in same eye

^eDue to retinal detachment/tear

Summary of Safety and Effectiveness Data (SSED) TECNIS Synergy™ IOLs, Models ZFR00V, DFR00V, ZFW150, ZFW225, ZFW300, ZFW375, DFW150, DFW225, DFW300 and DFW375

Figure 2
Monocular Best-Corrected Distance Contrast Sensitivity at 6 Months
Mesopic Without Glare
Medians with 5th and 95th Percentile Error Bars

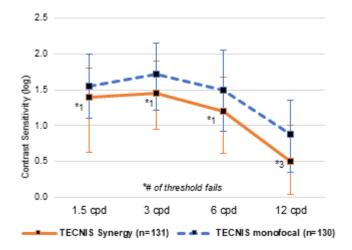



Figure 3
Monocular Best-Corrected Distance Contrast Sensitivity at 6 Months
Mesopic With Glare
Medians with 5th and 95th Percentile Error Bars

Summary of Safety and Effectiveness Data (SSED) TECNIS Synergy™ IOLs, Models ZFR00V, DFR00V, ZFW150, ZFW225, ZFW300, ZFW375, DFW150, DFW225, DFW300 and DFW375

Figure 4
Monocular Best-Corrected Distance Contrast Sensitivity at 6 Months
Photopic With Glare
Medians with 5th and 95th Percentile Error Bars

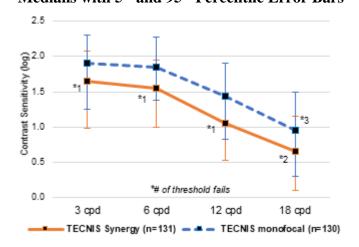


Figure 5
Binocular Best-Corrected Distance Contrast Sensitivity at 1 Month
Mesopic without Glare
Medians with 5th and 95th Percentile Error Bars

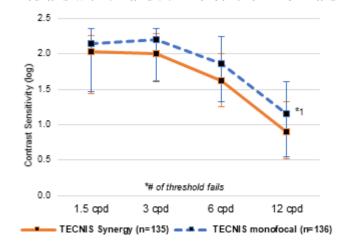


Figure 6
Binocular Best-Corrected Distance Contrast Sensitivity at 1 Month
Mesopic with Glare
Medians with 5th and 95th Percentile Error Bars

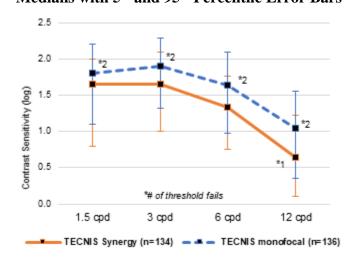
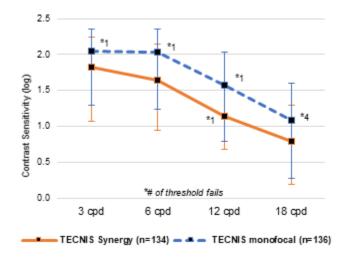



Figure 7
Binocular Best-Corrected Distance Contrast Sensitivity at 1 Month
Photopic with Glare
Medians with 5th and 95th Percentile Error Bars

Optical/Visual Symptoms

Optical/visual symptoms that were spontaneously reported by subjects (non-directed) and questionnaire-directed reports of experience/bother/difficulty with visual problems (directed) were evaluated. Non-directed reports of optical/visual symptoms included halos, night glare, and starbursts, of which there were few reports of severe symptoms for both Synergy and control groups (**Table 16**). As shown in the responses to the directed questionnaire (**Table 17**), reports of

Summary of Safety and Effectiveness Data (SSED) TECNIS Synergy™ IOLs, Models ZFR00V, DFR00V, ZFW150, ZFW225, ZFW300, ZFW375, DFW150, DFW225, DFW300 and DFW375

bothersome visual disturbances were generally acceptable for the Synergy group at 6 months. The highest rate of the most bothersome reports ("extremely bothersome") of optical/visual symptoms at 6 months was for starbursts, at 5.3% (7/131) for Synergy and 0.0% (0/131) for the control.

Bother or difficulty with a visual symptom that interfered with a daily activity for more than 3 months and was considered by the investigator to be at least possibly related to the IOL was considered an Adverse Device Effect. There were eleven such events from 8.1% (11/135) of SynergyTM subjects and none for control subjects; one resulted in lens removal.

Table 16 Spontaneous (Non-directed^a) Reports of Optical/Visual Symptoms (First Eyes) at 6 Months

	TECNIS Synergy N=131		mono	CNIS ofocal 131
	n	%	n	%
Halos ^b	30	22.9	5	3.8
∘Mild	8	6.1	3	2.3
o Moderate	17	13.0	2	1.5
o Severe	5	3.8	0	0.0
Night Glare ^b	11	8.4	2	1.5
oMild	1	0.8	0	0.0
o Moderate	7	5.3	2	1.5
o Severe	3	2.3	0	0.0
Starbursts ^b	13	9.9	2	1.5
oMild	3	2.3	2	1.5
Moderate	5	3.8	0	0.0
oSevere	5	3.8	0	0.0
Photophobia	2	1.5	3	2.3
Day glare	2	1.5	1	0.8
Night vision difficulty	6	4.6	1	0.8

^{% = (}n/N)*100

Subjects may report multiple symptoms.

^aResponses to the question, "Are you having any difficulties with your eyes or vision?"

^bSeverity collected in follow-up response

Table 17
Experience/Bother With Visual Symptoms at 6 Months (Directed Questionnaire)

		TECNIS Synergy™ N=131		TECNIS monofoc N=131	
		n	%	n	%
Halos	Did not experience or NR	24	18.3	79	60.3
	Not at all bothered	19	14.5	23	17.6
	Slightly bothered	40	30.5	22	16.8
	Moderately bothered	30	22.9	6	4.6
	Very bothered	13	9.9	1	0.8
	Extremely bothered	5	3.8	0	0.0
Starbursts	Did not experience or NR	46	35.1	102	77.9
	Not at all bothered	18	13.7	17	13.0
	Slightly bothered	27	20.6	4	3.1
	Moderately bothered	25	19.1	6	4.6
	Very bothered	8	6.1	2	1.5
	Extremely bothered	7	5.3	0	0.0
Multiple or Double Vision	Did not experience or NR	113	86.3	116	88.5
	Not at all bothered	2	1.5	5	3.8
	Slightly bothered	10	7.6	4	3.1
	Moderately bothered	2	1.5	5	3.8
	Very bothered	2	1.5	1	0.8
	Extremely bothered	2	1.5	0	0.0
Sensitivity to Light	Did not experience or NR	63	48.1	71	54.2
	Not at all bothered	13	9.9	9	6.9
	Slightly bothered	30	22.9	32	24.4
	Moderately bothered	19	14.5	11	8.4
	Very bothered	5	3.8	6	4.6
	Extremely bothered	1	0.8	2	1.5
Glare Related to Scattered Light	Did not experience or NR	69	52.7	110	84.0
	Not at all bothered	9	6.9	4	3.1
	Slightly bothered	23	17.6	12	9.2
	Moderately bothered	19	14.5	3	2.3
	Very bothered	5	3.8	2	1.5
	Extremely bothered	6	4.6	0	0.0
Occlusions	Did not experience or NR	127	96.9	128	97.7
	Not at all bothered	1	0.8	1	0.8
	Slightly bothered	1	0.8	2	1.5
	Moderately bothered	0	0.0	0	0.0
		-		~	

		TECNIS Synergy™ N=131		TECNIS monofocal N=131	
		n %		n	%
	Very bothered	2	1.5	0	0.0
	Extremely bothered	0	0.0	0	0.0
Poor Low Light Vision	Did not experience or NR	79	60.3	80	61.1
	Not at all bothered	9	6.9	6	4.6
	Slightly bothered	25	19.1	34	26.0
	Moderately bothered	15	11.5	6	4.6
	Very bothered	3	2.3	4	3.1
	Extremely bothered	0	0.0	1	0.8

% = (n/N)*100NR = Not Reported

2. Effectiveness Results

Effectiveness analyses were based on the modified intent-to-treat (mITT) cohort of 135 subjects with bilateral Synergy[™] lenses and 137 subjects with bilateral control lenses who were available for the 6-month evaluation. For determination of endpoint criteria, statistical significance was assessed using the mITT population, and clinical significance was assessed using the safety population. The key effectiveness outcomes for this study are presented below in **Tables 18, 21, 22, and 25**, and in **Figures 10 to 15**.

Near Visual Acuity at 40 cm

The primary study endpoint of monocular photopic distance-corrected near visual acuity (DCNVA) at 40 cm was achieved, demonstrating the effectiveness of the TECNIS SynergyTM IOL in providing substantially improved near vision at 40 cm compared to an aspheric monofocal. The results of monocular (first eye) photopic (85 cd/m²) DCNVA testing at 40 cm at 6 months for both the SynergyTM and control groups are presented in **Table 17**. There was a statistically significant improvement (p<0.0001) in mean monocular distance corrected near visual acuity at 6 months in favor of the SynergyTM group (0.104 LogMAR), with an improvement of 4.2 lines, or 0.42 LogMAR over the control group.

Table 18
Mean Near Visual Acuity at 40 cm at 6 Months

		Monocular Binocular									
Near (40 cm) Visual Acuity	Lens Group	N	n	Mean LogMAR	Snellen Equiv.	Line Change vs. Control ^a	N	n	Mean LogMAR	Snellen Equiv.	Line Change vs. Control ^a
Uncorrected	TECNIS Synergy			Not tested			131	131	0.060	20/23	3.3 lines
Officorrected	TECNIS monofocal		Not tested					130	0.393	20/49	
Distance	TECNIS Synergy	131	131	0.104	20/25	4.2 lines ^b	131	131	0.047	20/22	3.6 lines
Corrected	TECNIS monofocal	131	130	0.522	20/67		131	130	0.403	20/51	
Mesopic Distance Corrected	TECNIS Synergy	131	131	0.315	20/41	3.4 lines	131	131	0.244	20/35	3.5 lines
	TECNIS monofocal	131	130	0.654	20/90		131	130	0.591	20/78	

^a Line difference (control minus Synergy) is converted directly from LogMAR difference.

Monocular near (40 cm) visual acuity distributions for both lens groups are presented in **Tables 19A and 19B**; binocular near (40 cm) visual acuity distributions are presented in **Tables 20A and 20B**. Near (40 cm) visual acuity results demonstrate the effectiveness of the Synergy lens in providing improved near vision compared to the monofocal control lens.

Table 19A
Distribution of Monocular Distance-Corrected Near Visual Acuity at 40 cm at 6 Months

Monocular Snellen	Syı	CNIS nergy =131	TECNIS monofocal N=131		
Visual Acuity	n	%	n	%	
20/20 ⁻² or better	44	33.6%	2	1.5%	
$20/25^{-2}$ or better	92	70.2%	7	5.4%	
$20/32^{-2}$ or better	119	90.8%	10	7.7%	
$20/40^{-2}$ or better	124	94.7%	25	19.2%	
Worse than 20/40 ⁻²	7	5.3%	105	80.8%	
Total n	131		130		

^{%=(}n/Total n) * 100

^b Synergy met the primary study endpoint of significantly better mean DCNVA than control (p<0.0001, one-sided two-sample t-test) and a mean DCNVA of 0.104 LogMAR (Safety population).

Table 19B
Distribution of Monocular Distance-Corrected Near Visual Acuity at 40 cm at 6 Months

Monocular LogMAR Visual Acuity	Syı	CNIS nergy =131	TECNIS monofocal N=131		
Visual Acuity	n %		n	%	
0.00 LogMAR or better	33	25.2%	0	0.0%	
0.10 LogMAR or better	76	58.0%	6	4.6%	
0.20 LogMAR or better	110	84.0%	9	6.9%	
0.30 LogMAR or better	123	93.9%	19	14.6%	
Worse than 0.30 LogMAR	8	6.1%	111	85.4%	
Total n	131		130		

^{%=(}n/Total n) * 100

Table 20A
Distribution of Binocular Uncorrected Near Visual Acuity
at 40 cm at 6 Months

Binocular Snellen	Sy	CNIS nergy =131	TECNIS monofocal N=131		
Visual Acuity	n	%	n	%	
20/20 ⁻² or better	61	46.6%	0	0.0%	
$20/25^{-2}$ or better	114	87.0%	158	6.2%	
$20/32^{-2}$ or better	122	93.1%	25	19.2%	
$20/40^{-2}$ or better	127	96.9%	57	43.8%	
Worse than 20/40 ⁻²	4	3.1%	73	56.2%	
Total n	131		130		

 $^{%=(}n/Total \ n) * 100$

Table 20B
Distribution of Binocular Uncorrected Near Visual Acuity
at 40 cm at 6 Months

Binocular LogMAR	Syr	CNIS nergy =131	TECNIS monofocal N=131		
Visual Acuity	n	%	n	%	
0.00 LogMAR or better	43	32.8%	0	0.0%	
0.10 LogMAR or better	101	77.1%	2	1.5%	
0.20 LogMAR or better	120	91.6%	14	10.8%	
0.30 LogMAR or better	126	96.2%	42	32.3%	
Worse than 0.30 LogMAR	5	3.8%	88	67.7%	
Total n	131		130		

%=(n/Total n) * 100

Near Visual Acuity at 33 cm

The secondary study endpoint of monocular DCNVA at 33 cm was achieved, demonstrating that the TECNIS Synergy[™] IOL provides substantially improved near vision at 33 cm compared to an aspheric monofocal. The results of near visual acuity testing at 33 cm under photopic (85 cd/m²) lighting conditions at 6 months for both Synergy[™] and control groups are presented in **Table 21**. There was a statistically significant improvement (p<0.0001) in mean monocular DCNVA at 33 cm at 6 months in favor of the Synergy[™] group (mean 0.154 LogMAR), with an improvement of 4.5 lines, or 0.455 LogMAR over the control group.

Table 21 Mean Monocular Near Visual Acuity at 33 cm at 6 Months

1/100011 1/101100		1 20		· · · · · · · · · · · · · · · · · · ·	0114110
Lens Group	N	n	Mean LogMAR	Snellen Equivalent	Line Change vs. Control ^a
Group	IN.	n	LOGINIAR	Equivalent	Control
TECNIS Synergy	131	131	0.154	20/29	4.5 lines ^b
TECNIS monofocal	131	130	0.608	20/81	4.5 111165

^a Line difference (control minus Synergy) is converted directly from LogMAR difference.

^b Synergy met the secondary study endpoint of significantly better mean DCNVA at 33 cm than control (p<0.0001, one-sided two-sample t-test) and a mean DCNVA of 0.154 LogMAR (Safety population).

Intermediate Visual Acuity

The secondary effectiveness study endpoint of monocular, photopic DCIVA at 66 cm was achieved, demonstrating that the TECNIS SynergyTM IOL provides substantially improved intermediate vision compared to an aspheric monofocal. The results of intermediate visual acuity testing at 66 cm under photopic (85 cd/m²) lighting conditions at 6 months for both SynergyTM and control IOL groups are presented in **Table 22**. There was a statistically significant improvement (p<0.0001) in mean monocular DCIVA at 6 months in favor of the SynergyTM lens (0.060 LogMAR), with an improvement of 2.8 lines, or 0.275 LogMAR over the control group.

Table 22 Mean Intermediate Visual Acuity at 66 cm at 6 Months

				Mond	ocular		Binocular				
Intermediate Visual Acuity	Lens Group	N	n	Mean LogMAR	Snellen Equiv.	Line Change vs. Control ^a	N	n	Mean LogMAR	Snellen Equiv.	Line Change vs. Control ^a
l la compete d	TECNIS Synergy			Not To	-4 d		131	131	0.022	20/21	1.8 lines
Uncorrected	TECNIS monofocal			Not Tes	stea		131	130	0.199	20/32	
Distance	TECNIS Synergy	131	131	0.060	20/23	2.8 lines ^b		Not Tested			
Corrected	TECNIS monofocal	131	130	0.335	20/43				NOL 16:	sieu	

^a Line difference (control minus Synergy) is converted directly from LogMAR difference.

Monocular intermediate visual acuity distributions for both lens groups are presented in **Tables 23A and 23B**; binocular intermediate visual acuity distributions are presented in **Tables 24A and 24B**. Overall, the intermediate visual acuity results demonstrate the effectiveness of the Synergy lens to provide improved intermediate vision compared to the monofocal control lens.

^b Synergy met the secondary study endpoint of significantly better mean DCIVA than control (p<0.0001, one-sided two-sample test) and a mean DCIVA of 0.060 LogMAR (Safety population).

Table 23A
Distribution of Monocular Distance-Corrected Intermediate
Visual Acuity at 66 cm at 6 Months

Monocular Snellen		S Synergy =131	TECNIS monofocal N=131		
Visual Acuity	n	%	n	%	
20/20 ⁻² or better	72	55.0%	8	6.2%	
$20/25^{-2}$ or better	105	80.2%	17	13.1%	
$20/32^{-2}$ or better	125	95.4%	37	28.5%	
$20/40^{-2}$ or better	129	98.5%	68	52.3%	
Worse than 20/40 ⁻²	2	1.5%	62	47.7%	
Total n	131	131 130			

Monocular UCIVA was not tested %=(n/Total n) * 100

Table 23B
Distribution of Monocular Distance-Corrected Intermediate
Visual Acuity at 66 cm at 6 Months

Monocular LogMAR		S Synergy =131	TECNIS monofocal N=131			
Visual Acuity	n	%	n	%		
0.00 LogMAR or better	47	35.9%	4	3.1%		
0.10 LogMAR or better	97	74.0%	10	7.7%		
0.20 LogMAR or better	117	89.3%	24	18.5%		
0.30 LogMAR or better	127	96.9%	55	42.3%		
Worse than 0.30 LogMAR	4	3.1%	75	57.7%		
Total n	131		130			

Monocular UCIVA was not tested %=(n/Total n) * 100

Table 24A
Distribution of Binocular Uncorrected Intermediate Visual Acuity at 66 cm at 6 Months

Binocular Snellen		IS Synergy =131	TECNIS monofoca N=131			
Visual Acuity	n	%	n	%		
20/20 ⁻² or better	84	64.1%	18	13.8%		
$20/25^{-2}$ or better	117	89.3%	44	33.8%		
$20/32^{-2}$ or better	130	99.2%	96	73.8%		
$20/40^{-2}$ or better	131	100.0%	114	87.7%		
Worse than 20/40 ⁻²	0	0.0%	16	12.3%		
Total n	131		130			

%=(n/Total n) * 100

Table 24B
Distribution of Binocular Uncorrected Intermediate Visual Acuity at 66 cm at 6 Months

Binocular LogMAR		NIS Synergy N=131	TECNIS monofocal N=131		
Visual Acuity	n	%	n	%	
0.00 LogMAR or better	64	48.9%	8	6.2%	
0.10 LogMAR or better	107	81.7%	31	23.8%	
0.20 LogMAR or better	127	96.9%	78	60.0%	
0.30 LogMAR or better	131	100.0%	106	81.5%	
Worse than 0.30 LogMAR	0	0.0%	24	18.5%	
Total n	131		130		

%=(n/Total n) * 100

Distance (Far) Visual Acuity

The secondary effectiveness endpoint of BCDVA was achieved, demonstrating the TECNIS Synergy[™] IOL to provide BCDVA that is non-inferior to that of an aspheric monofocal. The results of best-corrected distance visual acuity testing at 4.0 m under photopic (85 cd/m²) lighting conditions at 6 months for Synergy[™] and control first eyes are presented in **Table 25**. Monocular BCDVA was comparable between the Synergy[™] and control IOL groups, with mean Snellen equivalents of 20/19 and 20/18, respectively. The lower limit of the two-sided 95% confidence

Summary of Safety and Effectiveness Data (SSED) TECNIS Synergy™ IOLs, Models ZFR00V, DFR00V, ZFW150, ZFW225, ZFW300, ZFW375, DFW150, DFW225, DFW300 and DFW375

interval (CI) of the mean difference in BCDVA between IOL groups was greater than the non-inferiority margin.

Table 25 Mean Distance (Far) Visual Acuity at 6 Months

				Mon	ocular	•			Bir	ocular	
Distance Visual Acuity	Lens Group	N	n	Mean LogMAR	Snellen Equiv.	Line Change vs. Control ^a	N	n	Mean LogMAR	Snellen Equiv.	Line Change vs. Control ^a
Uncorrected	TECNIS Synergy	131	131	0.090	20/25	-0.4 lines	131	131	0.023	20/21	-0.5 lines
Oncorrected	TECNIS monofocal	131	130	0.052	20/23		131	130	-0.028	20/19	
Best	TECNIS Synergy	131	131	-0.014	20/19	-0.3 lines ^b	131	131	-0.056	20/18	-0.3 lines
Corrected	TECNIS monofocal	131	130	-0.045	20/18		131	130	-0.086	20/16	

^a Line difference (control minus Synergy) is converted directly from LogMAR difference.

The distributions of monocular distance visual acuity for Synergy and control first eyes at 6 months are presented in **Tables 26A and 26B**. The proportion of Synergy first eyes achieving monocular best-corrected distance visual acuity (BCDVA) of 20/40 or better (100.0%) was above the ISO Safety and Performance Endpoint (SPE) rates for BCDVA. The distributions of binocular distance visual acuity for Synergy and control subjects at 6 months are presented in **Tables 27A and 27B**.

Table 26A
Distribution of Monocular Distance (Far) Visual Acuity at 6 Months

Monocular Snellen Visual Acuity		TECNIS	Synergy	7	TECNIS monofocal				
		Uncorrected N=131		Best Corrected N=131		rrected =131	Best Corrected N=131		
	n	%	n	%	n	%	n	%	
20/20 ⁻² or better	50	38.2%	105	80.2%	72	55.4%	115	88.5%	
20/25 ⁻² or better	93	71.0%	127	96.9%	107	82.3%	126	96.9%	
20/32 ⁻² or better	115	87.8%	130	99.2%	121	93.1%	130	100.0%	
20/40 ⁻² or better	128	97.7%	131	100.0%	126	96.9%	130	100.0%	
Worse than 20/40 ⁻²	3	2.3%	0	0.0%	4	3.1%	0	0.0%	
Total n	131		131		130	-	130	•	

%=(n/Total n) * 100

^b Synergy met the secondary study endpoint for statistically non-inferiority to the control (Safety population).

Table 26B
Distribution of Monocular Distance (Far) Visual Acuity at 6 Months

		TECNIS	Synergy	7	TECNIS monofocal				
Monocular LogMAR	Uncorrected N=131		Best Corrected N=131		Uncorrected N=131		Best Corrected N=131		
Visual Acuity	n	%	n	%	n	%	n	%	
0.00 LogMAR or better	33	25.2%	88	67.2%	55	42.3%	102	78.5%	
0.10 LogMAR or better	76	58.0%	122	93.1%	92	70.8%	121	93.1%	
0.20 LogMAR or better	106	80.9%	130	99.2%	116	89.2%	129	99.2%	
0.30 LogMAR or better	126	96.2%	131	100.0%	124	95.4%	130	100.0%	
Worse than 0.30 LogMAR	5	3.8%	0	0.0%	6	4.6%	0	0.0%	
Total n	131		131		130	-	130		

%=(n/Total n) * 100

Table 27A
Distribution of Binocular Distance (Far) Visual Acuity at 6 Months

		TECNIS	Synergy		TECNIS monofocal				
Binocular Snellen		Uncorrected N=131		Best Corrected N=131		rrected =131	Best Corrected N=131		
Visual Acuity	n	%	n	%	n	%	n	%	
20/20 ⁻² or better	88	67.2%	118	90.1%	105	80.8%	119	91.5%	
20/25 ⁻² or better	113	86.3%	130	99.2%	123	94.6%	129	99.2%	
20/32 ⁻² or better	127	96.9%	130	99.2%	127	97.7%	130	100.0%	
20/40 ⁻² or better	129	98.5%	131	100.0%	129	99.2%	130	100.0%	
Worse than 20/40 ⁻²	2	1.5%	0	0.0%	1	0.8%	0	0.0%	
Total n	131		131		130		130		

%=(n/Total n) * 100

Table 27B
Distribution of Binocular Distance (Far) Visual Acuity at 6 Months

Binocular LogMAR Visual Acuity		TECNIS	Synergy		TECNIS monofocal				
	Uncorrected N=131		Best Corrected N=131		Uncorrected N=131		Best Corrected N=131		
- Visual Acuity	n	%	n	%	n	%	n	%	
0.00 LogMAR or better	67	51.1%	108	82.4%	88	67.7%	116	89.2%	
0.10 LogMAR or better	105	80.2%	130	99.2%	118	90.8%	128	98.5%	
0.20 LogMAR or better	123	93.9%	130	99.2%	126	96.9%	130	100.0%	
0.30 LogMAR or better	129	98.5%	131	100.0%	128	98.5%	130	100.0%	
Worse than 0.30 LogMAR	2	1.5%	0	0.0%	2	1.5%	0	0.0%	
Total n	131		131	·	130		130		

%=(n/Total n) * 100

Defocus Curve

The secondary effectiveness study endpoint of monocular distance-corrected depth of focus at 6 months was achieved. The mean monocular defocus range at 0.2 LogMAR for each lens group at 6 months are presented in **Figure 10**. The TECNIS SynergyTM IOL achieved at least 0.2 LogMAR

Summary of Safety and Effectiveness Data (SSED)
TECNIS Synergy™ IOLs, Models ZFR00V, DFR00V, ZFW150, ZFW225, ZFW300, ZFW375, DFW150, DFW225, DFW300 and DFW375

VA from 0.0 D to -2.5 D of defocus and sustained it beyond -3.0 D of defocus, which corresponds to a range of distances from approximately 33 cm to infinity.

Figure 11 presents monocular defocus curves for the SynergyTM group by pupil size. The curves for medium and large pupils are essentially indistinguishable with 0.2 LogMAR visual acuity sustained to beyond -3.0 D. It should be noted that there were no eyes in the small pupil size category for the SynergyTM group. Therefore, the TECNIS SynergyTM IOLs demonstrated pupil-independent lens performance between 0 and -3.0 D of defocus among the pupil sizes available (>2.5 mm).

Monocular defocus curves for the SynergyTM and control groups are presented by small, medium, and large pupil sizes in **Figures 12 and 13**, respectively. The range of defocus for medium and large pupils in the SynergyTM group are greater than that for the control group by approximately 2.5 D and 2.0 D, respectively.

Figure 14 presents the binocular defocus curves for the SynergyTM and control groups at 1 month. The binocular defocus curves show results similar to the monocular 6-month defocus results, with a difference favoring the SynergyTM group, with approximately 2.5 D more defocus range (at 0.2 LogMAR) than the control group.

Figure 8
Mean Monocular Distance-Corrected Defocus Curve at 6 Months
TECNIS Synergy™ (N=131) and TECNIS monofocal (N=131)

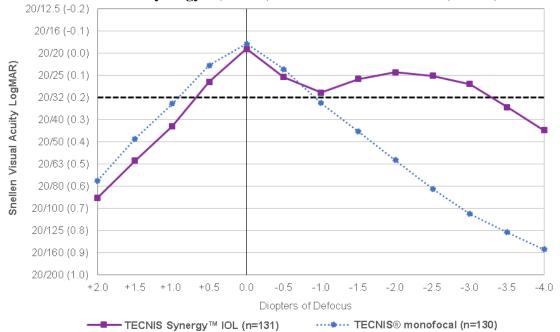


Figure 9 Mean Monocular Distance-Corrected Defocus Curve By Pupil Size at 6 Months TECNIS Synergy $^{\text{\tiny TM}}$

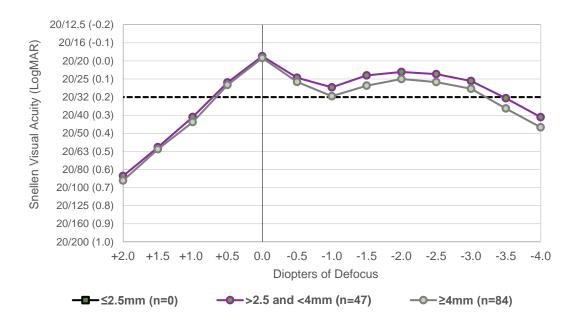


Figure 10
Mean Monocular Distance-Corrected Defocus Curve for Medium Pupils (>2.5 and <4 mm) at 6 Months
TECNIS Synergy™ and TECNIS monofocal

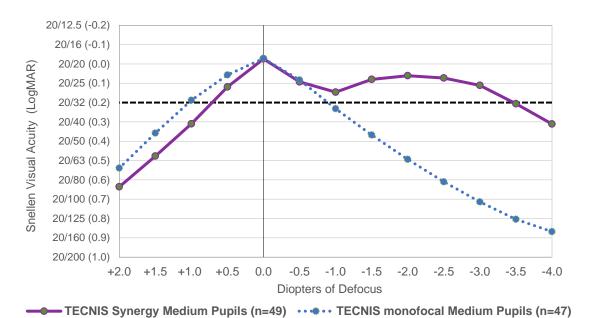


Figure 11
Mean Monocular Distance-Corrected Defocus Curve for
Large Pupils (≥4 mm) at 6 Months
TECNIS Synergy™ and TECNIS monofocal

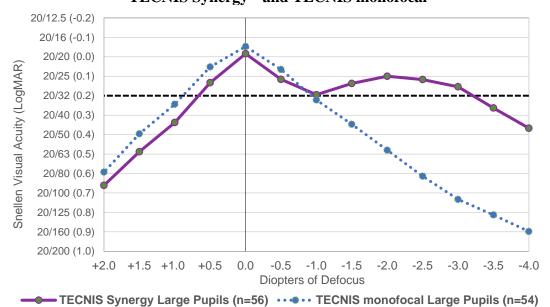
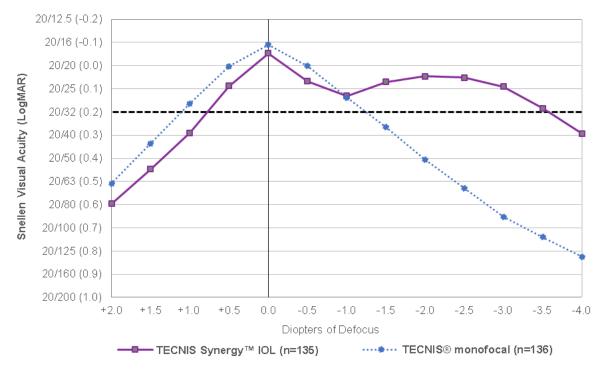



Figure 12 Mean Binocular Distance-Corrected Depth of Focus Curve at 1 Month Bilateral TECNIS Synergy $^{\text{\tiny TM}}$ (N=135) and TECNIS monofocal (N=136)

Patient Reported Spectacle Independence Questionnaire Results

The secondary effectiveness endpoint regarding spectacle wear was achieved, based on the responses to the Patient Reported Spectacle Independence Questionnaire (PRSIQ), which was developed and evaluated following the US FDA guidance document "Patient-Reported Outcomes Measures: Use in Medical Product Development to Support Labeling Claims" (2009). The endpoint was based on the proportion of subjects who reported wearing glasses or contacts "none of the time" under all four conditions: distance, intermediate, near, and overall vision at 6 months, and results are shown in **Figure 15**. There was a statistically significantly greater (p<0.0001) proportion of subjects in the Synergy[™] group (87.8%; 115/131) who reported wearing glasses "none of the time" in all four conditions (distance, intermediate, near, and overall vision) compared to the control group (3.1%; 4/131), which was a 84.7 percentage point difference.

Subjects who responded positively to multiple questions from the PRSIQ regarding eyeglass need and wear, and straining to see without glasses at distance, intermediate, near, and overall, at 6 months were also tabulated for each lens group. A greater proportion of

positive responses were observed for the SynergyTM group, where 55.7% (73/131) of subjects reported reduced eyeglass need and wear without straining to see without eyeglasses with the SynergyTM IOL, compared to 2.3% (3/131) with the control.

■TECNIS Synergy (N=131) □TECNIS monofocal (N=131) 100% 87.8% (115/131) 90% 80% 70% 60% Subjects (%) 50% 84.7 point difference 40% 30% 20% 10% 3.1% (4/131) 0% Subjects who did not WEAR eyeglasses for distance (far), intermediate, near, & overall

Figure 13
Patient Reported Spectacle Independence Questionnaire^a Results at 6 months

Each subject reported "None of the time" for all four conditions.

3. Subgroup Analyses

A subgroup analysis for the primary effectiveness endpoint (DCNVA at 40 cm) and all secondary effectiveness endpoints (DCIVA at 66 cm, BCDVA at 4 m, DCNVA at 33 cm, defocus curve and spectacle wear) was done by stratifying the results by the following preoperative characteristics: site, age group (<60, 60-69, 70-79 and >=80), sex and race. The results of DCNVA, DCIVA, defocus curve and spectacle wear endpoints when

stratifying by preoperative characteristics all uniformly show improvement of ZFR00V group over the control group. For BCDVA, the result shows that ZFR00V is no worse than 1 line compared to control when stratifying by all preoperative characteristics.

4. Pediatric Extrapolation

In this premarket application, existing clinical data was not leveraged to support approval of a pediatric patient population.

E. Financial Disclosure

The Financial Disclosure by Clinical Investigators regulation (21 CFR 54) requires applicants who submit a marketing application to include certain information concerning the compensation to, and financial interests and arrangement of, any clinical investigator conducting clinical studies covered by the regulation. The pivotal clinical study included 18 investigators of which none were full-time or part-time employees of the sponsor and 4 had disclosable financial interests/arrangements as defined in 21 CFR 54.2(a), (b), (c) and (f) and described below:

- Compensation to the investigator for conducting the study where the value could be influenced by the outcome of the study: 0 investigators
- Significant payments of other sorts: 4 investigators
- Proprietary interest in the product tested held by the investigator: 0 investigators
- Significant equity interest held by investigator in sponsor of covered study: 0 investigators.

The applicant has adequately disclosed the financial interest/arrangements with clinical investigators. Statistical analyses were conducted by FDA to determine whether the financial interests/arrangements had any impact on the clinical study outcome. The information provided does not raise any questions about the reliability of the data.

XI. SUMMARY OF SUPPLEMENTAL CLINICAL INFORMATION

One feasibility study comparing the TECNIS SynergyTM IOL [Non violet-light filtering SENSAR equivalent (Model ZFR00) of TECNIS SynergyTM IOL] to a multifocal control (Model ZLB00) conducted. No issues regarding device safety or lack of effectiveness were raised by the results from these studies.

Primary clinical study outcomes for the parent lenses are provided in the TECNIS SynergyTM labeling in Tables 16-43; these tables are incorporated by reference from previous approvals. As a result, these tables were not repeated within this SSED. Below identify which tables are associated with each submission:

- Tables 16-25: TECNIS Toric 1-Piece IOLs, Models ZCT150, ZCT225, ZCT300 and ZCT400 (P980040/S039)
- Tables 26-30: TECNIS Symfony® Extended Range of Vision IOL, Model ZXR00 (P980040/S065)
- Tables 31-34: TECNIS Multifocal IOL, Model ZM900 (P080010)
- Tables 35 to 42: TECNIS 3-Piece OptiBlueTM IOL, Model ZV9003 (P980040/S035)
- Tables 43: SENSAR® 1-Piece IOL, Model AAB00

XII. PANEL MEETING RECOMMENDATION AND FDA'S POST-PANEL ACTION

No Panel meeting.

XIII. CONCLUSIONS DRAWN FROM PRECLINICAL AND CLINICAL STUDIES

A. <u>Effectiveness Conclusions</u>

The overall effectiveness of the TECNIS SynergyTM IOL, Model ZFR00V, was demonstrated based on the 6-month results of the IDE clinical investigation. In addition, the effectiveness of the toric models (Models ZFW150, ZFW225, ZFW300, and ZFW375) in providing reduced postoperative refractive astigmatism is supported by the clinical data provided for the monofocal toric parent IOL in P980040/S039, which has the same toric surface and mechanical design. The primary effectiveness endpoint, statistically and clinically significant improvements in monocular distance-corrected near visual acuity (DCNVA) at 40 cm compared to control, was achieved by the TECNIS SynergyTM IOL (mean 0.104 LogMAR), with an improvement of 4.2 lines in mean DCNVA compared to the monofocal IOL.

The secondary effectiveness endpoints of mean distance-corrected intermediate visual acuity at 66 cm and near visual acuity at 33 cm were also met with statistical and clinical significance, where the TECNIS Synergy[™] group showed a 2.8-line improvement in DCIVA (mean 0.060 LogMAR) and a 4.5-line improvement in DCNVA at 33 cm (mean 0.154 LogMAR) over the control. The secondary endpoint for best-corrected distance (far) visual acuity was also met, where the TECNIS Synergy[™] group was non-inferior to the control (lower two-sided 95% CI of the mean difference was greater than the non-inferiority margin) in BCDVA.

The secondary effectiveness endpoint for monocular distance-corrected defocus for the TECNIS SynergyTM IOL was achieved with a range of 0.2 LogMAR or better visual acuity that spanned from 0.0 to beyond -3.0 D of defocus, which was approximately 2.5 D more than the control.

The secondary endpoint of spectacle wear was achieved with a statistically and clinically significant improvements in the proportion of subjects in the TECNIS SynergyTM group (15/131, 87.8%) who responded "None of the time" to wearing glasses for far, intermediate, near and overall vision compared to the control (4/131, 3.1%).

B. Safety Conclusions

The safety profile of the TECNIS SynergyTM IOL is based on nonclinical laboratory studies as well as a primary clinical study conducted to support PMA approval in G190057. In addition, the clinical data from previous U.S. studies for the TECNIS Multifocal IOL, Model ZM900 (G030191, P080010 – the multifocal optical parent lens, TECNIS Symfony Extended Range Of Vision IOL Model ZXR00 (G140094, P980040/S065 - the EDF optical parent lens), the SENSAR 1-piece IOL, Model AAB00 (G050183, P980040/S015 - the mechanical parent lens) and the TECNIS OptiBlue 3 Piece IOL, Model ZV9003 (G060212, P980040/S035 – the material parent) provided data that are relevant to the TECNIS SynergyTM IOL device safety. These studies of the parent IOLs included patient follow-up up to 1 (one) year of up to least 300 subjects. The TECNIS SynergyTM IOL, Model ZFR00V, made of the same FDA-approved surface-treated SENSAR violet-light filtering soft acrylic material as its material parent, and has a design that is derived from proven material, mechanical and optical parents that have a long history of safe clinical use. The results of prior nonclinical laboratory testing, animal studies on the SENSAR violet-light filtering acrylic material and the one-piece lens design support safety of this lens model. In addition, the results of dimensional, optical cosmetic and folding/recovery properties of the TECNIS SynergyTM IOL demonstrated conformance to applicable sections of ISO 11979-2 and ISO 11979-9, ISO 11979-3, ANSI Z80.30, and internal product specifications.

The 6-month results of the IDE clinical investigation of the TECNIS Synergy[™] IOL, Model ZFR00V, provide reasonable assurance of the safety of this lens model. There were no unanticipated adverse events. One secondary surgical intervention related to the optical properties of the lens occurred during the study, and the second eye lens of the same subject was removed after the study exit for similar reason. The rates of cumulative and persistent adverse events in first eyes, including secondary surgical interventions and BCDVA of 20/40 or better, were below or not statistically higher than the ISO 11979-7 Safety and Performance Endpoint (SPE) rates and the rate of all non-SPE adverse events were comparable to that of the control. Monocular contrast sensitivity without and with glare for photopic and mesopic conditions were lower for the TECNIS Synergy[™] group than control under the glare conditions evaluated in this study; these differences did not appear to be clinically meaningful.

Reports of optical/visual symptoms that were rated as extremely bothersome were higher in the TECNIS SynergyTM group, including halos (5/131, 3.8%), glare (6/131, 4.6%), and starbursts (7/131, 5.3%), which were higher than reported the rates in the control group. Taken together, the clinical evidence demonstrates a reasonable assurance of safety for the TECNIS SynergyTM IOL when used as indicated.

C. Benefit-Risk Determination

The probable benefits of the TECNIS SynergyTM IOLs, Models ZFR00V, ZFW150, ZFW225, ZFW300, and ZFW375, are based on data collected in a clinical study conducted to support PMA approval and other clinical studies, as described above. The benefits of the subject devices are summarized as follows:

- a. As with all intraocular lenses, these provide a lifelong benefit of optically replacing the crystalline lens for adult patients in whom a cataractous lens has been removed. This is a defined and predictable patient group with a non-life threatening, well-characterized condition (aphakia).
- b. Compared to an aspheric monofocal IOL, these lens models provide improved intermediate and near visual acuity, while distance visual acuity is comparable. For patients with preoperative corneal astigmatism greater than 1 diopter, the toric models provide reduction in residual refractive astigmatism, compared to a monofocal IOL.

Additional factors to be considered in determining probable risks and benefits for the TECNIS SynergyTM IOLs, Models ZFR00V, ZFW150, ZFW225, ZFW300, and ZFW375, include:

- a. Clinical data were collected using a study design that included randomized treatment and masking of subjects and evaluators.
- b. Medical adverse events and complications (e.g., risks of infection, inflammation, corneal edema, etc.) are similar to those associated with most other intraocular lenses.
- c. The risks associated with the optical design include reduced contrast sensitivity (compared to monofocal) and visual symptoms related to stray light, such as glare, halos and starbursts. Some of these may make some tasks such as driving, more difficult under certain circumstances. These issues are mitigated by labeling which informs users of these risks and quantifies them.

1. Patient Perspective

This submission either did not include specific information on patient perspectives or the information did not serve as part of the basis of the decision to approve or deny the PMA for this device.

In conclusion, given the available information above, the data support that for the visual correction of aphakia related to cataract surgery, in adult patients with less than 1 diopter of pre-existing corneal astigmatism, and for mitigating the effects of presbyopia in these patients by providing a range of vision (far to intermediate to near), to reduce eyeglass wear compared to an aspheric monofocal lens, the probable benefits of the TECNIS SynergyTM IOL outweigh the probable risks. Similarly, the data support that for the visual correction of aphakia related to cataract surgery, in adult patients with greater than or equal to 1 diopter of preoperative corneal astigmatism, and for the reduction of refractive astigmatism, and for mitigating the effects of presbyopia in these patients by providing improved vision to reduce eyeglass wear compared to an aspheric monofocal lens, the probable benefits of the toric models of the TECNIS SynergyTM IOL outweigh the probable risks

D. Overall Conclusions

The data in this premarket application support the reasonable assurance of safety and effectiveness of the subject devices when used in accordance with the Indications for Use and the labelled Directions for Use. All effectiveness endpoints were met with clinically significant improvements in visual acuity at far, intermediate, and near, defocus, and spectacle wear, demonstrating the ability of the TECNIS SynergyTM IOL to provide improved vision, to reduce eyeglass wear compared to an aspheric monofocal lens. All safety endpoints were also met, and adverse event rates were either lower than or not statistically higher than grid rates established in an FDA-recognized international standard.

XIV. CDRH DECISION

CDRH issued an approval order on [date of approval order].

The applicant's manufacturing facilities have been inspected and found to be in compliance with the device Quality System (QS) regulation (21 CFR 820).

XV. APPROVAL SPECIFICATIONS

Directions for use: See device labeling.

Hazards to Health from Use of the Device: See Indications, Contraindications, Warnings, Precautions, and Adverse Events in the device labeling.

Summary of Safety and Effectiveness Data (SSED) TECNIS Synergy™ IOLs, Models ZFR00V, DFR00V, ZFW150, ZFW225, ZFW300, ZFW375, DFW150, DFW225, DFW300 and DFW375

Post-approval Requirements and Restrictions: See approval order.

XVI. <u>REFERENCES</u>

International Standard Organization 10993, Biological Evaluation of Medical Devices International Standard Organization 11979-5, Ophthalmic Implants- Intraocular Lenses-Part 5: Biocompatibility

International Standard Organization 11979-2 Ophthalmic Implants – Intraocular Lenses – part 2: Optical Properties and Test Methods

International Standard Organization 11979-3 Ophthalmic Implants – Intraocular Lenses – Part 3: Mechanical Properties and Test Methods

International Standard Organization 11979-7 Intraocular Lenses – Part 7: Clinical Investigations

International Standards Organization 22979 Ophthalmic implants – Intraocular lenses – Guidance on assessment of the need for clinical investigation of intraocular lens design modifications

Masket S, Rorer E, Stark W, Holladay JT, MacRae S, Tarver ME, et al. Special Report: The American Academy of Ophthalmology Task Force Consensus Statement on Adverse Events with Intraocular Lenses. Ophthalmology. 2017 Jan;124(1):142-144.